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ABSTRACT 
Two-dimensional finite difference calculations are carried out to study laminar flow in longitudinal and 
transverse convection rolls for three different geometries: a single rectangular cavity with high aspect ratio; 
a double cavity with a thin separation sheet; and a double cavity with a separation sheet and a honeycomb 
structure. The equations for the convection-diffusion in the fluid and conduction in the solid region are 
solved simultaneously. Good agreement with experimental data is achieved for Rayleigh numbers not too 
high above the critical value for the onset of secondary convection rolls (Ra < 8500 for vertical and 
Ra < 2700 for horizontal cavities filled with air). Simulation fails for inclined cavities, where the flow 
structure is essentially three-dimensional. 

KEY WORDS Natural convection Inclined cavities Secondary flow Convection suppression Honeycombs 
Segregated method 

NOMENCLATURE 

A = Lx/L cavity aspect ratio 
A1 = Lx/L1 aspect ratio of an 

individual cavity 
Ac = Lc/L1 aspect ratio of a 

honeycomb cell 
Agrid = Δx/Δz grid aspect ratio 
B = L2/L1 ratio of the 

z-dimensions of upper 
and lower cavity 

g gravitation constant 
(dimensional) 

g gravitation vector 
(non-dimensional) 

gx,gy,gz x,y,z-component of the 
gravitation vector 
(non-dimensional) 

k thermal conductivity 
of the fluid 

K constant for the 
additional term in the 

Navier Stokes 
equation (10) 

kb thermal conductivity 
of the separation sheet 
and honeycomb 

kc wavenumber of the 
convection cells 
(non-dimensional) 

kcr critical wavenumber 
(non-dimensional) 

Lx,Ly,Lz dimension of the 
cavity in x,y,z-direction 

L = Lz characteristic length 
L1,L2 spacing of the two 

halfs of a double cavity 
Lb thickness of the 

separation sheet and 
honeycomb cell walls 

Lt x-dimension of the 
honeycomb cells 
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Nc number of convection 
cells 

Nx,Nz number of control 
volumes in 
x,z-direction 

Nu = Nusselt number 

p pressure 
= (p/p - r · g)/v0

2 nondimensional 
pressure 

Pr = v/α Prandtl number 
average heat flux 
through the isothermal 
boundaries 
heat flux at the 
solid-fluid interface 

R heating rate 
(non-dimensional) 

r = (x,y,z) vector to a point in 
the three dimensional 
space 
(non-dimensional) 

Ra = Rayleigh number 

Ra1 = Rayleigh n Rayleigh number 
based on L1 and Δθ1 

Racr critical Rayleigh 
number for the onset 
of secondary flow 

Raosc critical Rayleigh 
number for the onset 
of periodic 
time-dependent motion 

T= (θ - θm)/Δθ non-dimensional 
temperature 

Ts temperature at a grid 
point in the solid region 

Tf temperature at a grid 
point in the fluid region 

ΔT = 1 non-dimensional 
temperature difference 
between the isothermal 
sidewalls 

t time (non-dimensional) 
Δt iterative time step 

(non-dimensional) 
t0 = L/v0 characteristic time 
t1 final time of 

measurements 
(non-dimensional) 

tCPU computation time in 
minutes 

u,v,w x,y,z-components of 
the velocity vector 
(non-dimensional) 

v velocity vector 

(non-dimensional) 
v0 characteristic velocity 
Δx,Δy,Δz size of control volumes 

(non-dimensional) 
Δxif distance between fluid 

grid point and 
solid-fluid interface 

Δxsi distance between solid 
grid point and 
solid-fluid interface 

x,y,z nondimensional 
coordinates 
(characteristic length L) 

y unity vector in 
y-direction 

x inclination angle 
between x-axis and 
horizontal plane, 
thermal diffusivity of 
the fluid 

xf luid, αsolid thermal diffusivities of 
fluid and solid elements 

ã non-dimensional 
thermal diffusivity 

β inclination angle 
between y-axis and 
horizontal plane, 
thermal expansion 
coefficient of the fluid 

ε convergence criterion 
for mass production 

λc wavelength of 
convection cells 
(non-dimensional) 

λcr = 2π/kcr critical wavelength 
(non-dimensional) 

v kinematic viscosity 
θ temperature 
θc,θh temperatures of the 

cold and hot boundary 
plane 

θm = (θh + θc)/2 mean temperature of 
the cavity 

Δθ = θh — θc temperature difference 
between the isothermal 
sidewalls 

Δθ1 = temperature diffr temperature difference 
over the half cavity 
with spacing L1 for 
pure conduction 

p fluid density 
ΤOSC period time of 

oscillations 
(non-dimensional) 

ψ' stream function of the 
perturbation velocity 
field (non-dimensional) 

ψ amplitude of the 
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perturbation stream 
function 
(non-dimensional) 
peak to peak value of 
the periodic part of 

the stream function 
(non-dimensional) 

ψmax maximum value of the 
stream function 
(non-dimensional) 

INTRODUCTION 

A great variety of theoretical and experimental work has been undertaken to study natural 
convection in rectangular enclosures, since it is important in a wide range of technical applications, 
for example in window glazing, solar collectors and in the cooling of electronic equipment. 

Most of the theoretical work has been carried out for a differentially heated cavity with an 
infinite aspect ratio. For this infinite cavity, an analytical solution of the governing equations 
exists in the form of a parallel shear flow with a cubic velocity profile and a linear temperature 
gradient between the isothermal plates1. 

At a critical Rayleigh number (Racr) this base shear flow becomes unstable. For near vertical 
cavities filled with air (Pr = 0.71) the resulting flow pattern consists of transversal convection 
rolls, with a critical Rayleigh number Racr = 5700 and a critical wavenumber kcr = 2.81 at the 
inclination angle a = 90°. The wavenumber of the flow pattern decreases with increasing Ra. 
Linear stability analysis of the roll patterns shows that already at sightly supercritical values of 
Ra ≈ 6070 (1.06 Racr) more complex three-dimensional flow patterns occur, and at values of Ra 
as low as 6200 (1.09 Racr) the flow becomes periodically time-dependent2. 

For inclination angles between 0° and 70°, longitudinal convection rolls are more stable3,4. 
The critical value of the Rayleigh number for longitudinal rolls is Racr = 1708/cosα, with a critical 
wavenumber kcr = 3.117. Stability analysis of longitudinal rolls5, shows a transition to a 
three-dimensional wavy flow pattern, for inclination angles between 10° and 70°, already appear 
at Ra - Racr = 10. 

Linthorst et al.6 have, from a visualization of the secondary flow patterns, shown that the 
flow pattern for nearly horizontal cavities, with finite aspect ratio, are convection rolls with the 
axis perpendicular to the longer side wall. 

This is confirmed by a three-dimensional numerical and experimental study of Kirchhartz/Oertel7 

for finite boxes with aspect ratios 10:4:1 and 4:2:1. They obtain Racr = 1883 for the horizontal 
10:4:1 box with a linear temperature profile at the boundaries, and show that Racr increases with 
decreasing aspect ratio. For small inclination angles a < 12° transverse rolls are shown to exist 
instead of longitudinal rolls, confirming the observations of Linthorst et al.6. For inclination 
angles from 0° to 30°, transverse rolls at the side walls already exist in the subcritical regime. 
For angles a > 65° no convection rolls are obtained. Time dependent motion sets in at 
Ra ≈ 6.7 Racr for the horizontal 10:4:1 box, but already at values Raosc = 2900 · cosα for the angle 
range 15° < a < 60°. 

A stabilizing effect of sidewall boundaries has also been observed by Goldhirsch et al.8 in a 
two-dimensional numerical analysis using a pseudo-spectral method. They showed that, during 
the build-up time, rolls already grow at the side-walls at subcritical values of Ra; the final roll 
number depends on Ra as well as on the symmetry of the initial distribution. Periodic time 
dependent motion sets in at Ra ≈ 105, i.e. at a value higher than that obtained in the three 
dimensional analysis of Kirchhartz and Oertel. 

Two dimensional finite difference calculations of transverse convection cells have been carried 
out by Ramanan and Korpela9, Wright10 and Roux et al.4. Roux et al. showed that no transverse 
rolls occurred for aspect ratios A < 12. 

Heat transport measurements by Walden11 for 2 < Pr < 20 showed that three dimensional 
tertiary instabilities, in a horizontal layer, lead to a decrease in the Nusselt number, while the 
oscillatory instabilities leave the mean heat transfer coefficient nearly unchanged. 
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In this work, a two-dimensional simulation program has been developed in order to predict 
heat transfer and flow structure in cavities for a wide range of Ra and inclination angle a. The 
numerical results for high aspect ratios (A = 20 and A = 40) have been compared with both 
experimental data and numerical results. The code once tested has been applied to more complex 
geometries like double glazing and honeycomb structures. 

GEOMETRY AND BOUNDARY CONDITIONS 

The geometries studied are a single cavity with different aspect ratios A and inclination angles 
a (Figure 1a), a double cavity with a thin separation sheet (Figure 1b) and a double cavity with 
a separation sheet and a honeycomb structure (Figure 1c). Figure 2 shows the definition of the 
coordinate-axis and angles in a single cavity for the simulation of transverse and longitudinal 
convection rolls. The boundary conditions are isothermal top and bottom plates and zero heat 
flux at the side walls. The case of a linear temperature profile at the edges is not studied, because 
boundary conditions at the side walls are shown to have little effect on the flow at high aspect 
ratios12. 
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MATHEMATICAL DESCRIPTION AND NUMERICAL METHOD 

The flow in the cavity is described by the Boussinesq approximation of the governing equations 
assuming all fluid and material properties as constant except for the density in the buoyancy terms. 

A characteristic velocity is chosen balancing the convection and buoyancy terms: 

If in the dimensional Navier-Stokes equations lengths are divided by L and times by t0 = L/v0, 
we obtain the non-dimensional equations, defining a non-dimensional temperature 
T= (θ—θm)/Δθ and pressure (with a correction representing the constant part of the gravitation 
force) p = (p/p - r · g)/v0

2: 

For the description of transverse convection rolls (gy = 0), i.e. for rolls with an axis orthogonal 
to the gravitational vector, in a cavity with infinite y-dimension all y-derivatives and the 
y-component of the velocity vector are zero: 

This leads to a completely two-dimensional description of the problem: 

with the following boundary conditions: 
T= 1/2 for z = - 1/2 
T= -1/2 for z = 1/2 

= 0 for x=±A/2 

In the case of longitudinal convection rolls [gx = 0) for an infinite dimension in y-direction, 
the y-derivatives are also zero. The y-component of the velocity vector has a finite value 
representing a parallel shear flow in the y-direction, which, however, as can be shown5, neither 
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affects the temperature distribution, nor the x- and z-components of the velocity field. The 
problem can, therefore, again be reduced to a two-dimensional description becoming formally 
identical with the calculation for transverse cells, if we set the inclination angle a to zero and 
replace Ra by Ra* = Ra cosβ, β being the inclination of the y-axis to the horizontal plane. 

In order to keep a uniform mathematical formulation for the whole domain, solid structures 
in the cavity are accounted for by an additional term Kv in the Navier-Stokes equation13,14,15,16 

and a non-dimensional thermal diffusivity in the energy equation 

K is a very large constant (> 1015) in the solid regions, which reduces the velocity to a very 
small value, and elsewhere K is zero. The non-dimensional thermal diffusivity has a value 

= a / a f l u i d . 
This allows the simultaneous solution of the conduction in the solid elements and the 

convection-conduction in the fluid, a fact that makes the computer code easily extendable to a 
large variety of geometries. 

The discretization of the equations follows the second-order accurate central difference scheme. 
It has been shown that the artificial diffusion introduced by upwinding schemes suppresses the 
growth of secondary convection cells10,17. The heat flow at the solid-fluid interface is calculated 
taking into account the step change in thermal conductivity: 

The solution of the discretized equations follows the SIMPLEC method described by Van 
Doormal and Raithby18 using a modified strongly implicit method19 to solve the algebraic 
equations. 

Both transitory and pseudo-transitory calculations are carried out, the formalism being the 
same, but leading the fields to convergence for each time step in the first case and calculating 
just one iteration in the second. The maximum residual of the continuity equation, i.e. the 
maximum mass production/destruction in one control volume, is required to be less than ε = 10 - 3 

as a criterion for convergence. Where not otherwise mentioned transitory calculations have been 
applied. 

The initial map for all calculations is u = v = w = 0 and T(x,z)= -z/Lz, i.e. a linear 
temperature distribution representing pure conduction. 

To test the stability of the convection cells in dependence of the wavelength (number of cells) 
an artificial velocity field proposed by Wright10 (Chap. 6) is applied which represents a periodic 
cellular flow distribution with defined wavelength λc = 2π/kc: 

with: 

The artificial velocity field v' is added to the original velocity field at a time, at which the base 
shear flow already is developed, while convection cells have not yet grown. This corresponds to 
a non-dimensional time of about t = 50 under the conditions applied in this study. The value 
of ψ was chosen to ψ = 0.2. 
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The calculations have been carried out on a work station of 75 MIPS with a computation 
time of about 0.2 ms per iteration step and grid point. 

RESULTS FOR A SINGLE CAVITY 

Influence of the time step 
The simulations of the flow in the vertical case were carried out as pseudo-transitory as well 

as real transitory. The results for the pseudo-transitory calculations plotted in Figure 3a shows 



430 H. SCHWEIGER ET AL 

a strong dependence on the time step of the temporal variation of the parameters as well as of 
the final converged structure. This indicates that the pseudo-transitory calculation is acting as 
a perturbation leading the development of the flow structure to one of various possible stable 
solutions. The streamlines and isotherms of the converged flow structure for different time-steps 
are plotted in Figure 3b. The different solutions are distinguished by the number of convection 
rolls, which varies from 13 to 15. 

This dependence on the time step vanishes if real transitory calculation is carried out (Figure 
4). In this case the temporal variation of flow parameters remains practically stable for a time 
step Δt < 0.2. 

As in the vertical case, in a real transitory calculation for the horizontal cavity the dependence 
on the time step can be neglected for Δt < 0.2 with a grid of 200 x 24 (Figure 5). A 
pseudo-transitory calculation for this case has not been carried out. 

Influence of the grid size 
To elucidate the dependence of the results on the applied grid the simulation was carried out 

with a variety of different grid sizes (Table 1) for the vertical cavity. The number as well as the 
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Table 1 Global flow parameters of the converged solution for different grid sizes. Ra = 104, a = 90˚, Δt = 0.2, t1 = 2500 

Nx 

99 
199 
141 
99 

199 
399 
399 
176 
350 
500 

Nz 

13 
13 
17 
25 
25 
25 
49 
24 
50 
70 

A g r i d 

5.3 
2.6 
4.8 

10.1 
5.0 
2.5 
4.9 
2.7 
2.9 
2.8 

A 

40 
" 
" 
" 
" 
" 
" 
20 
" 
" 

Nu 

1.248 
1.267 
1.267 
1.258 
1.281 
1.272 
1.289 
1.417 
1.413 
1.413 

ψmax 

0.3205 
0.3163 
0.3116 
0.3013 
0.3021 
0.3077 
0.2969 
0.3082 
0.3048 
0.3042 

ψc/ψmax 

0.1694 
0.2353 
0.2355 
0.1788 
0.2809 
0.2874 
0.3102 
0.2838 
0.2989 
0.3007 

Nc 

14 
14 
14 
15 
15 
15 
15 
6 
6 
6 

λc 

2.502 
2.624 
2.605 
2.425 
2.550 
2.876 
2.567 
2.814 
2.841 
2.843 

tCPU 

20.55 
41.19 
36.21 
41.52 
85.45 

176.45 
374.07 
37.81 

369.27 
1202.26 

amplitude of the cells in the converged state shows a strong dependence on the grid applied 
indicating a convergence to an asymptotic value for the finest grid applied (45 x 70 grid points 
per convection cell, 500 x 70 in total). Note that, while the variation of a global parameter such 
as the overall-heat transfer coefficient from the finest to the coarsest grid is less than 4%, the 
amplitude of the periodic part of the stream function is reduced by about 46% (Figures 6 and 7). 

A comparison of the calculations with different grids for a horizontal cavity has not yet been 
carried out, but the fact that the number of convection cells is higher than in the vertical case 
indicates that a still higher number of grid points should be applied to obtain a converged solution. 

The results presented in this work for a single cavity have been calculated with a grid of 200 x 24. 

Dependence on the history of the flow 
As linear stability theory indicates, various stable solutions should exist for different 

wavelengths (i.e. numbers of convection cells) in a limited range2. Multistability and metastability 
are also observed by Kirchhartz and Oertel7 and Goldhirsch et al.8. Therefore an attempt was 
made to lead the solution to different final structures by superposition of a cellular flow of 
different wavelengths at the moment the base flow tends to convergence while convection cells 
have still not grown. The wavelength and number of cells generated following (14) and the results 
obtained from the converged solution for a vertical box are listed in Table 2. The wavelength 
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Table 2 Results for the converged flow fields using a superimposed cellular flow after (14) with wavelength λ5
c and cell 

number N5
c. Ra = 104, a = 90˚, A = 40, Δt = 0.2, t1 = 1000 

N5
c 

_ 
-
15 
14 
13 
12 

λ5
c 

_ 
-
2.2 
2.4 
2.6 
2.9 

Nc 

15 
13 
14 
14 
15 
14 

λc 

2.550 
2.797 
2.677 
2.677 
2.548 
2.677 

Nu 

1.281 
1.269 
1.276 
1.276 
1.281 
1.276 

ψmax 

0.3021 
0.3116 
0.3079 
0.3079 
0.3049 
0.3079 

ψc/ψmax 

0.2809 
0.2769 
0.2809 
0.2817 
0.2848 
0.2817 

(*) 
(**) 

(*)t1 = 3000 
(**)t1 = 3000, pseudo-transitory calculation with Δt = 0.2 

of the converged flow is determined as the size of the central convection cell. For the value of 
Ra = 104 and A — 40 three stable states exist with 13, 14 and 15 cells, respectively. The three 
states can be distinguished by characteristic values of global flow parameters. The solution with 
Nc = 13 has been obtained only in a pseudo-transitory calculation and could not be reproduced 
by superposition of the appropriate wavelength. 

The stability of the converged flow structures has been tested by superposition of a cellular 
flow with a wavelength of another stable solution and an amplitude of ψ = 0.2. All solutions 
are stable to these perturbations. To obtain a change from one cell-number to another, 
perturbations with an amplitude ψ > 1 had to be applied. 

The superposition of a cellular flow in the horizontal box (A = 40) leads to stable solutions 
in the range 41 ≤ Nc ≤ 49 for the number of convection cells and 1.48 < λc < 2.07 for the 
cell-wavelength (Table 3; note that the wavelength is equal to the size of two rolls with alternate 
rotation). The solutions have been proved to be stable to small perturbations, as described for 
the vertical case. 

Dependence of flow parameters on the Rayleigh-number 
The plot of Nusselt versus Rayleigh number for numerical results obtained in this study for 

the vertical cavity (A = 40) compared with both experimental and other numerical results (Figure 
8) shows a good agreement of the data in the range 6200 < Ra < 8500, i.e. the range where 
stable transversal rolls exist is well represented. The onset of secondary flow is at Racr ≈ 6200, 
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Table 3 Results for the converged flow fields using a superimposed cellular flow after (14) with wavelength λ5
c and cell 

number N5
c. Ra = 104, a = 0˚, A = 40, Δt = 0.2, t1 = 1000 

N5
c 

_ 
53 
51 
49 
47 
45 
41 
39 
35 
33 
29 

λ5
c 

_ 
1.176 
1.224 
1.277 
1.333 
1.395 
1.463 
1.600 
1.800 
2.000 
2.200 

Nc 

43 
49 
49 
47 
45 
43 
43 
47 
43 
41 
41 

λc 

1.926 
1.483 
1.623 
1.484 
1.686 
1.892 
1.890 
1.624 
1.826 
1.984 
2.068 

Nu 

1.671 
1.627 
1.411 
1.644 
1.663 
1.671 
1.671 
1.650 
1.671 
1.672 
1.670 

ψ m a x 

0.7329 
0.6979 
0.6982 
0.7109 
0.7126 
0.7254 
0.7248 
0.7046 
0.7329 
0.7455 
0.7556 

ψc/ψmax 

0.1991 (*) 
0.1549 
0.1470 
0.1549 
0.1815 
0.1982 
0.1983 
0.1687 
0.1905 
0.1986 
0.1946 

(*)t1 = 3000 

a value that differs from the theoretical value 5700 for infinite boundaries due to the stabilizing 
effect of lateral boundaries. 

Below Racr there is a very good agreement with other numerical studies10,12. The numerical 
results differ from the experimental correlation of El Sherbiny et al.20. This is explained by the 
fact that the errors in the correlation equation of El Sherbiny et al. for the conduction regime 
are too big to represent the real behaviour. However, accurate experimental data in this range 
in order to prove this are not available. 

The deviation of numerical and experimental data at Ra > 8500 should be due to the onset 
of tertiary motion. Following linear stability theory for infinite cavities2, three-dimensional flow 
structures should be expected already at values of Ra as small as 1.06 Racr. The good agreement 
of the data up to Ra ≈ 8500 may be explained by the fact that the influence of tertiary motion 
like the monotone instabilities described by Chait and Korpela2 on the overall heat transfer 
coefficient is small11, and therefore experimental results are well reproduced by a two-dimensional 
analysis. 

Figure 8 also shows that simulation results carried out with an upwinding discretization 
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scheme12,own data, which suppresses secondary cells, gives a too small heat transfer coefficient for 
Ra > Racr. 

For the horizontal cavity good agreement with the experimental results of Hollands et al.21 

is obtained up to Ra ≈ 2700, indicating that, already, at Ra = 1.4 Racr three-dimensional flow 
is becoming important (Figure 9). A base shear flow as in the vertical case does not exist due 
to fact that the x-component of the gravitation force is zero. The diameter of the convection 
cells is nearly constant throughout the whole cavity indicating that the range of influence of the 
walls is less than a cell-wavelength. 

Figures 10 and 11 show the cell wavelength as a function of Ra for the vertical and the 
horizontal cavity, respectively. The solutions have been obtained starting from standard initial 
conditions without any perturbation of the flow field. The transitions between regimes with 
different numbers of convection cells can be clearly seen. The number of cells decreases from 15 
to 11 (A = 40) in the plotted range of Ra for the vertical case, whereas it increases with increasing 
Ra from 41 to 45 (A = 40) for the horizontal case. For a vertical cavity with A = 20 the wavelength 
of the two stable states with 6 and 7 cells have been plotted for comparison with another 



LAMINAR CONVECTION IN RECTANGULAR CAVITIES 435 

numerical study of Lee and Korpela22. The results of Lee and Korpela correspond to the solution 
with 7 convection cells and are in good coincidence with our data, if their grid (65 x 17) is applied. 

Calculations for different angles of inclination 
Figure 12 represents the results obtained for the overall heat transfer coefficient at different 

angles of inclination for both transverse and longitudinal convection rolls. It can be seen that 
neither of the two models gives a good description of experimental behaviour for inclined cavities. 
In this case three-dimensional effects should be important already at fairly supercritical values 
of Ra4,23,24. 

RESULTS FOR THE DOUBLE CAVITY 

In this section results will be presented for a double cavity with a separation sheet as convection 
barrier (Figure 1b). The calculation is carried out for the following parameters: 

= 0.0251; k/kb = 0.1; A1 = L1/Lx = 40; asolid/afluid = 0.005; 
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These parameters are representative for a 50 μm Teflon cover in an air filled cavity with 20 mm 
total plate spacing L = L1 + Lb + L2. 

To obtain the Nu vs. Ra dependence of the system the calculation was carried out with 
time-dependent boundary conditions. A slow linear variation of Ra with time was obtained by 
raising and then decreasing the temperature difference linearly between a Δθmin and a Δθmax. A 
non-dimensional heating rate defined as: 

R = ∂(Ra1)/∂t; (15) 
was chosen small enough, so that over the whole region of Ra nearly steady state values are 
reached (R = 0.2 for the vertical cavity, R = 0.06 for the horizontal cavity). The fact that the 
growth rate of convection rolls is very small at values of Ra, near Racr, leads to some kind of 
hysteresis in the results. The real value of Racr lies somewhere between the values for rising and 
falling Ra. 

The applied grid size was 200 x (24 + 3 + 24), 3 points of discretization for the separation 
sheet and 24 points for each of the two cavities in z-direction. 

The time step was chosen as Δt = 0.2, which should be small enough to represent the real 
time dependence of the system following the results presented above for a single cavity. 

The numerical results for the symmetrically divided horizontal cavity (B = L2/L1 = 1, A1 = 40) 
are plotted in Figure 13. They have been compared with a theoretical correlation extrapolated 
from data of Lienhard and Catton25,26,27 for a cavity with the parameters given above, but with 
infinite aspect ratio: 

As an additional reference, our numerical results for a single cavity (A = 40) at the same 
heating rate and the experimental correlation of Hollands et al.21 are plotted. It is demonstrated 
that the new boundary conditions decrease the stability of the system as pointed out by Lienhard 
and Catton. The critical Rayleigh number of the simulation for the double cavity is somewhat 
higher than the theoretically predicted value of 1340, an effect which is due to the stabilizing 
influence of the sidewalls in a finite-aspect ratio cavity. 

Figure 14 shows the numerical results for the vertical double cavity (B = 1, A1 = 40) in 
comparison with those for a single cavity (A = 40). Racr for the onset of cellular motion, which 

Figure 13 Nu vs. Ra* for a single and a double horizontal cavity, R = 0.2. Single cavity: A = 40, Ra* = 
Ra. Double cavity: A1 = 40, B = 1. Ra* = Ra1. Experimental correlation for an infinite single cavity from 
Hollands et al.21. Theoretical correlation for an infinite double cavity after (16), based on data from Lienhard 

and Catton25,26,27 
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can be determined as the point of a change of slope of the Nu vs. Ra curve, is nearly the same 
in the single and double cavity, in agreement with experimental results of Wright and Sullivan28. 
The heat transport by the base flow, however, is strongly increased. At Ra > 7500 the flow in 
the double cavity becomes unstable and shows periodic time-dependent behaviour in the two 
dimensional simulation with a period time ΤOSC = 700 for Ra = 104. 

Figure 15 shows the build-up phase of the flow for some runs with a constant Rayleigh number. 
It can be seen, that the build-up time for the base flow in the double cavity is about one order 
of magnitude higher than that for a single cavity. The curves for the double cavity at t = 500 
still show an increasing slope, while the corresponding curve for a single cavity reaches its 
asymptotic value already at about t = 200. 

Finally, the influence of the parameter B on the heat transfer has been studied for a vertical 
(Figure 16) and a horizontal (Figure 17) double cavity. Only values B ≥ 1 have been considered, 
because the solutions for B < 1 are the same as those for 1/B for reasons of symmetry25. For 
both the vertical and the horizontal cavity minimum heat transfer occurs for a symmetric division 
of the cavity (B = 1). 
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RESULTS FOR THE DOUBLE CAVITY WITH HONEYCOMB 

Simulations were carried out for a vertical double cavity with a honeycomb structure in one 
half of the domain (Figure 7c). The dimensions of the double cavity are the same as in the 
preceding section. The influence of the aspect ratio of the honeycomb cells has been studied, 
keeping the aspect ratio of the individual half cavity constant at A1 = 40. The thickness and the 
thermal properties of the honeycomb material were assumed to be identical with the 
corresponding values for the separation sheet given in the previous section. 

The number of grid points has been 24 + 3 + 24 in the z-direction and between 200 Ac = 40) 
and 500 (Ac = 0.5) in the x-direction. 

Figure 18 shows both the isotherms and streamlines obtained for Ra = 104 at a time t1 = 1000. 
The corresponding values of the overall heat transfer coefficient are listed in Table 4. It can be 
seen that introducing a honeycomb with cell aspect ratio Ac > 0.5 increases the heat transfer. 
This is consistent with the investigation of the aspect-ratio dependence of the heat transfer 
coefficient in a single cell of Raithby and Wong12, who show that heat transfer reaches a maximum 
value at A ≈ 2. 

In order to study the behaviour of honeycombs with cell aspect ratios Ac ≤ 0.5 calculations 
have been carried out for a double cavity with A = 10 to reduce computation time. The influence 
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Table 4 Nu vs. Ac for a double cavity with honeycomb, 
A1 = 40, Ra1 = 104, a = 90° 

Ac 

40 
10 
1 
0.5 

Nu 

1.372 
1.519 
1.684 
1.374 
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Table 5 Global flow parameters and computation time 
in minutes for a double cavity with honeycomb, A = 10, 

Ac = 0.5, B = 1, Ra = 1.6 105, a = 90˚, t1 = 1000, 
Δt =0.2 

grid 

17 x 319 
25 x 439 
37 x 659 
49 x 879 

Nu 

1.480 
1.444 
1.427 
1.422 

ψmax 

0.0771 
0.0737 
0.0752 
0.0746 

tCPU 

621 
1268 
4416 
9103 

of the grid size has been studied for a vertical cavity with Ac = 0.5, B = 1 at Ra = 1.6·105. The 
results for the heat transfer coefficient differ less than 2% for all the grids applied (Table 5). 
However, very fine grids are necessary to resolve the detailed structure of the flow. In Figure 19 
for the two finer grids an onset of secondary convection rolls can be observed at t ≈ 80 by the 
sudden change of slope of the Nu(t)-curve while for the coarser grids this effect cannot be detected. 
The variation of the stream function maximum with time also shows a strong dependence on 
the applied grid (Figure 20). This indicates that still finer grids should be applied to get an 
asymptotic solution of the cellular part of the flow. 

To keep the computation effort within a reasonable limit, in the following studies grids with 
25 points in z-direction and 11 points per honeycomb cell in x-direction have been applied. 

Figure 21 shows the dependence of Nu on the cell aspect ratio Ac. It can be seen that Nu first 
decreases with decreasing Ac due to the suppression of convection in the honeycomb, and then 
increases with further decreasing Ac due to the increasing influence of the conduction in the 
separation walls of the honeycomb. 

In Figure 22 the dependence of Nu on the parameter B is plotted. Due to convection suppression 
in the honeycomb, the minimum of heat transfer is shifted to B > 1. 

CONCLUSIONS 

• A two-dimensional simulation of natural convection in a rectangular cavity has been able 
to reproduce secondary flow patterns for horizontal as well as for vertical orientation for 
fairly supercritical values of Ra. 
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• The time step and grid size required to obtain a converged solution have been shown to 
be Δt < 0.2 and Nx x Nz > 45 x 70 per convection cell. 

• For a given supercritical Ra various stable solutions have been shown to exist with slightly 
different values for the heat transfer coefficient. 

• Simulation fails for inclination angles which are neither nearly horizontal nor nearly vertical. 
In these cases three dimensional simulation will be necessary. 

• The results obtained for a double cavity are in good agreement with existing theoretical 
and experimental investigations. The new degree of freedom of the system reduces thermal 
stability. Minimum heat transfer occurs for a symmetrical division of the cavity. 

• Cavities with honeycomb structures have been simulated. This configuration gives a higher 
heat transfer than the simple double cavity for honeycomb aspect ratios Ac > 0.5. Convection 
heat transfer is reduced by a honeycomb with Ac < 0.5, however at small values of Ac 
conduction heat transfer in the separation walls of the honeycomb cells becomes important. 
For an optimum reduction of heat transfer an asymmetrical division of the cavity has to 
be foreseen, with the honeycomb structure located in the part with greater spacing. 
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